秒速赛车开奖:Cell研究揭示生物神经元

2018-05-21 19:15| 发布者: | 查看: |

  秒速赛车原标题:Cell研究揭示生物神经元强大新特性,是时候设计更复杂的神经网络了!

  任何宣称深度学习的灵感来源于生物的人都是出于种种营销目的,或者他压根就没读过生物学文献。

  两篇最近发表于Cell上的神经元基因Arc的新发现,揭示了生物神经元更大的复杂性,其远比我们想象得复杂得多。

  深度学习里的神经元实质上是数学函数,即相似度函数。在每个人工神经元内,带权重的输入信号和神经元的阈值进行比较,匹配度越高,激活函数值为1并执行某种动作的可能性就越大,不执行(对应函数值为0)的可能性越小。

  生物神经元并不会保持连续信号,而是产生动作电位,或者依据事件做出相应行为。

  因此,所谓“神经形态”(neuromorphic)的硬件,也就是受到“整合信息,然后发送信号”(integrate and spike)的神经元的启发。

  如果你对构建一个仿生认知系统感兴趣,可以看看今年2月这篇普度大学的论文。你必须知道的是,这类系统并不像深度学习框架那样具有连续作用性。

  从本质上来讲,生物系统利用最少的能量来维持生存,但深度学习系统需要消耗非常多的能量,对比十分鲜明。深度学习采用蛮力手段(不断尝试和犯错)来实现认知,我们知道它的运作原理,但是还不知道怎么减少深度学习的能耗。

  一直以来,学术界一直以来希望用仿生手段创造出比深度学习更加强大的体系,虽然在这个方面努力了很久,但是进展尚不明显。已经取得的进展有HTM神经元,它更贴近新大脑皮层(neo-cortex)结构。从下图中可以看出,这种神经元模型要比深度学习中的神经元复杂得多。

  相比之下,秒速赛车开奖:深度学习方法虽然用的是和卡通一样简单的神经元模型,近一段时间以来却意外大显身手,在认知方面取得了让人难以置信的成效。深度学习所做的事情非常正确,只是我们还不了解它做的究竟是什么。

  不过,仿生系统研究怕是要遇到阻碍了。以色列的一个关于神经元性质的新实验表明,生物中的神经元比我们想象得复杂得多:

  单个神经元的峰电位波形通常随着刺激部位的不同而改变,两者的关系可以用函数表达;

  在细胞外,从不同方向施加的刺激并不能引起空间性加成(Spatial summation);

  当细胞内外刺激交叠时,不会产生空间性加成或者空间性相减(Spatial subtraction)。如果这些刺激的精确时值互不相关,那么非局部时间的干扰也不能奏效。

  生物神经元很可能不是随着单一参数(也就是权重)而改变的纯函数能够描述的。它们更像是能显示各种状态的机器。换句话说,权重或许不是单值,而是多重值的,甚至是更高维度的。这些神经元的性质仍有待探索,我们对此几乎一无所知。

  如果你觉得这样的解释让理解神经元性质变得更难了,那还有两篇最近发表于Cell上的神经元基因Arc的新发。

<
>
相关文章
 
QQ在线咨询
售前咨询热线
400-800-8888
售后服务热线
400-800-8888
返回顶部